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Abstract— This paper presents an analytical investigation of the contact problem of a multilayered
elastic solid subjected to the eccentric indentation of a rigid circular plate in the framework of
classical elasticity. The total number of the dissimilar layers is an arbitrary integer ». These elastic
layers can rest either on a dissimilar elastic halfspace or on a rigid rock base. The rigid circular plate
is in smooth contact with the multilayered elastic solid. The classical theory of Fourier integral
transforms is employed to solve the partial differential equations governing the behaviour of the
multilayered elastic solid subjected to surface loading. Systems of standard Fredholm integral
equations of the second-kind are then developed to govern the interaction between the rigid plate
and the multilayered elastic solid. Explicit solution expression is further presented for the elastic
field in the multilayered solid due to the eccentric indentation of the rigid plate. Closed-form results
are respectively obtained for the singular stress field at the rigid plate edge in the multilayered elastic
solid and for the elastic field in a homogeneous elastic halfspace induced by the eccentric indentation
of the rigid plate. In particular, an asymptotic technique is utilized to overcome the difficulty
associated with the convergence and singularity of the solution near or at the surface of the
multilayered solid. Numerical results are presented to verify the techniques adopted in the paper
and to illustrate the effect of layering material non-homogeneity on the elastic field induced by the
eccentrically loaded rigid plate. The solution can be applied to the interpretation of non-destructive
testing of layered materials such as highway and airport pavements. Crown Copyright . 1996
Published by Elsevier Science Ltd

1. INTRODUCTION

The main motivation of the present study originates from application of the solution to
non-destructive evaluation of layered materials such as multilayered asphalt pavements.
One of the most widely used non-destructive evaluation techniques of pavements is the
Falling Weight Deflectometer (FWD) (Bush and Baladi. 1989 ; Monismith, 1992 ; May and
Quintus, 1994). In a FWD device, a thick circular steel plate, either padded or not padded
with thin rubber, is placed on the surface of a pavement and a pulse load is applied to the
circular rigid plate by a falling weight through a resilient system. The effective moduli of
the existing pavement structural layers are estimated by matching the measured maximum
surface deflections at several sensor locations via a backcalculation procedure. A majority
of the current backcalculation procedures are based on the multilayered elastic theory of
pavements originally developed by Burminster (1945). In these backcalculation procedures,
it was assumed that the contact pressure between the FWD loading plate and a multilayered
pavement is uniformly distributed over a circular area (Mahoney er al., 1989 ; May and
Quintus, 1994). This oversimplified model of the contact pressure has a significant effect
on the theoretical deflections in the near plate region and consequently induce errors in the
backcalculated effective moduli of the pavement structural layers (Boddapati and Nazarian,
1993).

The objective of the present study is to present an analytical solution for the elastic
response of a multilayered solid due to the eccentric indentation of a rigid plate. This
analytical solution can be further used to improve backcalculation procedures for the non-
destructive pavement evaluation using a FWD. Classical study of the relevant contact
problems was given by Boussinesq (1885) using potential theory for a circular rigid plate
smoothly in contact with a homogeneous elastic halfspace. This contact problem was re-
examined by Sneddon and Harding (1945) and Sneddon (1946) for an explicit expression
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of the induced elastic field using integral transform techniques. Since these classical works,
studies related to contact problems of a plate-solid model have been extended to cover (i)
flexibility of the plate ; (ii) influence of plate geometry ; (iil) interaction with external forces ;
(iv) influence of material anisotropy and plasticity ; (v) dynamic loads and wave propagation
effects; (vi) effect of frictional or rough contact: (vii) effect of saturated porous elastic
media ; (viii) influence of material heterogeneity. The literature on contact problems associ-
ated with a homogeneous elastic solid of either halfspace extent or layer extent have been
well documented by a number of authors including Uflyand (1968), Poulos and Davis
(1974), de Pater and Kalker (1975). Selvadurai (1979), Gladwell (1980), Fabrikant (1989),
Y ue and Selvadurai (1994), and Selvadurai and Yue (1994). The following is a brief review
of previous studies available in the relevant literature of contact problems associated with
multilayered or non-homogeneous elastic solids.

Schiffman (1962) presented a general theoretical study of stresses and displacements
in multilayered elastic systems subjected to surface loading and developed systems of dual
integral equations governing the indentation of a smooth circular rigid plate. Wu and Chiu
(1967) considered the plane strain problem in an one-layered elastic halfplane and reduced
the mixed boundary value problem to a single Fredholm integral equation of the second
kind. Dhaliwa (1970) was able to reduce the axisymmetric problem of a flat ended cylindrical
punch on an one-layered elastic halfspace to a Fredholm integral equation of the second
kind which he solved approximately. Carrier and Christian (1973) analyzed the axi-
symmetric displacements and stresses in a linearly non-homogeneous halfspace induced by
a rigid circular plate using a finite element technigue. Chen and Engel (1974) used a least-
squares approach to solve the axisymmetric contact problem, and presented the pressure
profile under indenters of various geometries for a two-layered elastic halfspace. Rowe and
Booker (1981) examined the axisymmetric surface settlement of a non-homogeneous elastic
soil with a crust subjected to a rigid circular footing using a finite layer analysis method.
Booker et al. (1985) provided analytical solutions for the behaviour of a smooth rigid disc
due to a normal load or a moment on the surface of a non-homogeneous halfspace in which
the Young's modulus E varies with the depth z as £ = M;z° (0 < 3 < 1). Chow (1987)
suggested a method, based on an axisymmetric finite element analysis, for effectively
estimating the vertical displacements of rigid flat foundations of arbitrary shape on layered
elastic soils. King (1987) examined the contact problems of flat-ended c¢ylindrical, quadri-
lateral, and triangular punches indenting a one-layered elastic halfspace using a basis
function technique ( for the former two) and a singular integral equation for the latter. The
load-deflection relation provided a basis for the estimation of Young’s modulus of thin
films for initial unloading compliance observed in indentation tests. Rajapakse and Sel-
vadurai (1991), using a variational technique, further examined the axisymmetric response
of a circular footing and an anchor plate in a linearly non-homogeneous elastic soil of
halfspace extent. Gao er al. (1992) considered the problem of a rigid cylindrical punch
indenting a one- or two-layered elastic halfspace using a moduli-perturbation method and
used the first-order approximated solution to model the unloading phase of a micro-
indentation test of the thin films deposited on a substrate. An axisymmetric finite element
analysis was also performed to investigate the effects of a penny-shaped debonding crack
along the film, substrate interface on the unloading compliance, and to analyze the energy
release rate of the crack.

The present paper in particular extends the analytical investigation to cover the contact
problem of a multilayered elastic solid subjected to the eccentric indentation of a rigid
circular plate (Fig. 1) in the framework of classical elasticity. The total number of the
dissimilar layers is an arbitrary integer n. These dissimilar homogeneous elastic layers can
rest on either a dissimilar elastic halfspace or a rigid rock base. The rigid circular plate is
in smooth contact with the multilayered elastic solid. The classical theory of Fourier integral
transforms is employed to solve the partial differential equations governing the behaviour of
the multilayered elastic system subjected to surface loading. Systems of standard Fredholm
integral equations of the second-kind are then developed to govern the interaction between
the rigid plate and the multilayered elastic solid. Explicit solution expression is further
presented for the elastic field in the multilayered solid due to the eccentric indentation of



Eccentrically loaded rigid plate elastic fields 4021
Loading Centroid

A circular
rigid plate

| Ao

=

---)(--)(---J

i« hn un Vn

A rigid base or an v
elastic halfspace J Mhs1 Vns

'z

Fig. 1. A multilayered elastic solid eccentrically indented by a rigid plate.

the rigid plate. Closed-form results are respectively obtained for the singular stress field at
the rigid plate edge in the multilayered elastic solid and for the elastic field in a homogeneous
elastic halfspace induced by the eccentric indentation of the rigid plate. A computer program
was developed to calculate the displacements, stresses, and strains in the multilayered elastic
system induced by the eccentrically loaded rigid plate. In particular. an asymptotic technique
was utilized to overcome the difficulty associated with the convergence and singularity of
the solution near or at the surface of the multilayered solid. Numerical results are presented
to verify the numerical techniques adopted in the paper and to illustrate the effect of
layering material non-homogeneity on the elastic field induced by the eccentrically loaded
rigid plate.

2. GOVERNING EQUATIONS

A brief account of the governing equations can be presented as follows in a Cartesian
tensor notation. The constitutive equation governing the linear relations between stresses
(0.4) and strains (e.,) in an isotropic solid takes the form

2uy . n
Top = 1 gy kO T 2HE D

The strains are related to the displacements (i) by
Ep = %(“,-./{‘*‘U/s.; ). (2)

The governing equations are complete with the specification of equations of static equi-
librium.

T.pp = 0 (3)

where 3. is the Kronecker delta; ;. f = x. 3. or -; g and v are, respectively, shear modulus
and Poisson’s ratio characterizing an isotropic elastic solid.
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Based on the classical theory of Fourier integral transforms (Sneddon, 1972), it can
be shown that the following set of solution representations exists for the field variables in
an elastic layer (0 < r < + ¢, 0 € 6 < 2r, a < z < b) in the cylindrical coordinate systems
{Or0:z and Ope:z) (Yue, 1988 ; Yue and Wang, 1988 ; Yue, 1992; Yue, 1995).

1 fx 2n
u(r.0,z) = o Mw(p, ¢, 2)Kdedp

“Jo Jo

w(p..2) = P [T*u(r, 0, z)K*rd6 dr
27-[ JO O JO
1 fr (P2n

T.(r.0.2) = Y.(p.¢.z)Kpdedp
277:,0 Jo
1 s (2n

Y.(p.p.2) = I I*T.(r. 0, 2)K*rd0 dr

JO O JO

] My M

L(r.0,0) = [,w(p.@.2)Kpdedp 4)
27%0 Jo

where the integration areas of the two-dimensional (2-D) integral are the two horizontal
planes (S and S) in the physical and transform domains, respectively. These integrals are
in the sense of the Cauchy principal values. The vector fields in eqns (4) are defined by
u=[u,u,u]" T =0, 0. 0] " I, = [en e Eau]rl w o= [w W, ns] " and Y. = [t T3]T§
where the superscript 7 stands for the transpose of matrix. w and Y. are two vectors in the
transform domain. K* and IT* are, respectively, the complex conjugates of the Fourier
matrix kernel functions K( = e# "~ j = \,/Tl) and IT defined by

visin(@+¢)  icos(B+¢) 0!
H=(icos(0+<p) —isin(0+¢) 0
0 0 1/

[1=cos2(80+¢) sin2(0+¢) |
sin 2(0+ @) cos2(8+¢) O J
\1+cos2(0+¢) —sin2(8+¢) 0/

(5

7

1
M, =—-
2

The relationships between the Cartesian and cylindrical coordinates are defined by
x=rcosf and y =rsinf. In the following, we shall note that w(z) = w(p, ¢.z), and
Y.(z) = Y.(p. ¢, z) for simplicity.

The partial differential eqns (1-3) governing the behaviour of an elastic layer can then
be reduced to the following two sets of first-order ordinary differential equations in terms
of the two vectors in the Fourier transform domain. i.e..

d
i V(o) = pC, V()

d
L UG = pCUe) (6)

where V = [w..1,]7. U = [, w4, 75, 7,] ", and
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By solving these linear systems of ordinary differential equations, we obtain the following
algebraic equations governing the field variables in the transform domain.

V() = """ P A(b—2)V(b)
Uiz) = e 2Q(b—2)U(b) (8)

where = < b, and the fundamental matrices A(y) and Q(y) are defined by

A(x) =3[A, +e A,]

Q) =3[Q, —pxR, +¢ *[Q,— pxR,]]. 9)

The algebraic governing equations for an elastic halfspace (b < z < oc) can be further
simplified as follows using the natural regularity boundary conditions as z — oo,

V(o) =e " MA V(D)
2U(z) = e " PQ, +pl(=— HR,JUB). (10)

Ineqns (9.10), A,. A, Q,. Q.. R,, and R, are six constant square matrices defined by

1 1 —-
Apzk u A, = ,u)
w1y \ —u 1
[ 1 — lﬁﬂ
2p
Q, = - 1 ﬂ
P 2/1
0 2u[l — o] l x
2u[l—2) 0 2 ] J
[ 14
1 % 0 *—2—[1‘1
1+
Q, = % ] o
0 2ula—1] 1 —a
\Zu[a—l] 0 - 1




s 1 l\
1 -1 - =
2u 2u
R,=(l—% |1 1 S
p = - - — 5 ~
i ) 2u 2u
2u —2p —1 |
2u —2u —1 1

1 1
-5 5
2 2u
1 1
R,=(l-2| I AR (11)
—2u  —2u 1 1
L 2u 2u —1 —1 )

3. THE MIXED BOUNDARY VALUE PROBLEM

The mixed boundary value problem considered here is a multilayered elastic solid
subjected to the eccentric indentation of a rigid circular and smooth plate (see Fig. 1). The
multilayered elastic solid consists of n dissimilar elastic layers which are either adhering to
an elastic halfspace or lying in smooth or rough contact with a rigid base. Referring to the
cylindrical coordinates in Fig. 1, it can be noted that the j-th elastic layer occupies a layer
region of H;” | < = < H; and has the thickness #( = H,— H, ,), the shear modulus yu, and
the Poisson’s ratiov; G = 1.2,3... .. nand H, = 0). The (n+ 1)-th layer can be etther a rigid
rock base of an elastic solid which occupies a halfspace region (H, < z <+ o0) and has
the shear modulus g, ,, and the Poisson’s ratio v, ;. For the perfectly bonded interface
connection, the vertical stress vector T.(r, 6, -} and the displacement vector u(r, 6, z) are
completely continuous at the horizontal interface between any two connected dissimilar
elastic layers, i.e.,

lim T.(r,0.2) =TA(r.0,H;), lim w(r.0.2)=u(r.0.H); j=12,..., n. (12)
z—H7

= H}

The mixed boundary conditions at the surface (- = H, = 0) of the multilayered elastic
solid can be written as follows,

6..(r0.0)=0, a<r<x. 0<0<2n

u(r,0,0) = D.+Qrcosf, 0<r<a 0<0<2n (13)

where a is the radius of the rigid circular plate; D. is the axial translation of the rigid plate
along the z-axis and Q, is the central rotation of the rigid plate about the y-axis. The shear
stresses at the entire surface (z = 0) are zero, i.e., 0,.(r,8,0) = 0 and 6,.(r,0,0) = 0, where
0 <r < ocand0 < 0 < 27n. The axial load P. and its associated moment M ( = P.d) acting
on the rigid plate have the following integral relations withe the contact normal stress
o..(r,0,0).

P = *j [”a:(n 0.0)rdo dr
0 Jo

~

le P;d = *J

I

[ o..(r.0,0)r cos0dodr (14)

0 Jo

where d is the eccentricity of the external load P. acting on the rigid circular plate.
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4. SOLUTION IN THE TRANSFORM DOMAIN

Using the governing eqns (8)(11) and the boundary and interfacial conditions (12)-
(13), it can be shown that w(z) and Y.(z) have the following expression.

1
w(z) = ;;(D(p,:)fa(p, @, 0), Y.(2) = ¥(p,2)13(p, 9, 0) (15)
1

where 7,(p. ¢.0) is the unknown contact normal stress in the transform domain. The kernel
functions ®(p,z) = [@,,,0,D4;]" and W(p,z) = [V, 0, ¥s3]" are specifically given in the
following using the backward transfer matrix technique (Yue and Wang, 1988 ; Yue, 1995).

1 1 T
[‘®lz~~~®n,\v,~,_~,.‘l’m] = ¢ "0,(p,2)lL(p) (16)
Hi Hy
where
(I)( ) {Qi(:«H/L H/,lgng/
‘ p"— a %[Qq(rHLl}+p(z_Hn)Rq(n+li]‘ :2 Hn
QI' (h/+ )Q#Z(hf‘:)"'Qn(hn)Mu?l( )lu* H <: s H
r,,(p)={ o e Loan
Mu l(p)lzn z= Hn
where j=1.2,3.....n 1,=[0.0.1,0]". M, '(p) is the inverse matrix of the coefficient
matrix M, (p) defined in the following equations.
PF
M, - ) (18)
Pqun

where an = Q](IZX)QZ(hZ) e Qn(hn)-

00 10
P, = :
00 0 1

(1) if the (n+ 1)-th layer is an elastic halfspace.

] 1

P = 2:“”*‘ 2:un+l
' l+1n+l 1+1”V1
1 — %, l — XAy _ V’)_,,___i

2”"*] Ll

(i1) if the (n+ 1)-th layer is a rough rigid base,

1 0 0 0
P, = :
01 0 0
or (i) if the (n+ 1)-th layer is a smooth rigid base.
0 0 0 1
P, = .
01 00

The matrix Q) in the above equations is obtained from eqns (8-11) by substituting u
and x with g, and 2. respectively.
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5. GOVERNING INTEGRAL EQUATIONS
Using the eqns (4), (13) and (13), the following set of two-dimensional (2-D) integral

equations can be obtained for the eccentric indentation of the smooth rigid plate (Yue,
1992 Yue and Selvadurai, 1994).

1 x 2n _
ﬂj J [14+4&3]t:(p. 0. 0)Kdodp = I #‘] [D.4+Qrcosfl], 0<r<a, 0<0<2n
0 Jo -V
1 S 2n
5 3(p. 0, 0)Kpdepdp =0, a<r<owo, 0<6<2nm, (19)
= 0 0
where & is a non-dimensional function of ph, y,and v, (j = 1,2,3,...,n+1) and is given

by the following equation:

]
ky=———=®y(p,2))._o— 1. 20
: (vi—1) (P2l 0

The above 2-D integral equations can be decoupled into the following two sets of dual
integral equations by using Fourier series expansions, where 1;(p,9,0) = T5(p) —
2isin @14,(p).

—
D
1—v,

J (14 k3]0 (p)o(prydp =
0

f ao(p)Wolpripdp =0, a<r< oo @1

Jo
and

J [I+kJespMi(pridp = =20 0<r<a
1} V) <

jrn(p)Jl(pr)pdpz(), a<r<oc. (22)
0

The two sets of dual integral eqns (21) and (22) are singular integral equations with

the regular singularity of 1/\/az—r2. To isolate the singularity, the following solution
representations are defined for 1,4(p) and 7;,(p) in terms of the auxiliary functions ¢(x)
and ¢,(x), respectively (Sneddon, 1972).

Ta(p) = [ o (x)cos (px)dx

Jo

a

T(p) = [ ¢ (x) sin (px) dx. (23)

Jo

The last equations in eqns (21) and (22) are then automatically satisfied. It is noted that

T (X))

J Ti0(p)olpr)dp = J — - dx
0 0 \/ ro—x-
! 1" x¢,(x)
T (P (pr)dp = f fﬁl_(iwdx. (24)
0 o r—x?
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Then the sets of dual integral equations can be reduced to the integral equation of the Abel
type.

~r x * _
(]5:,( -“)jdx-l-j katia(p)olpr)dp = lv'“y‘, D.
Jo NZaEat e 0 —V
" oxg, (x) —u,
¢ ———=dx+ [ kits (p)rd (pr)dp = AN Q,. (25)
0/ F =X 0 l—v, 2
‘\/ <

The solution of the Abel type integral eqns (25) can be written as the Fredholm integral
equations of the second kind. For convenience. the following non-dimensional variables
are introduced.

_r [ = Y (r) = P. 3, D= !,,_,vlp X
T T o Polr) = —27“14)(3), T 4pa T
h/ v = l—*\',
b=t =T )= ). Q= mx,. (26)
a a dna’ Buya®

The Fredholm integral equations of the second kind can then be reduced to the following
non-dimensional forms.

¢>(s)+J Ko(s. (1) dr =

1
l//(S)+J K (s.ny(ndr = sX, 27

where 0 < 5 < 1, and the non-dimensional kernel functions are defined by the following
semi-infinite integral,

o

2
Kots.00 =" J k1 (p) cos (ps) cos (pr) dp

) .
Ki(s.t) = ;[ k+(p)sin (ps)sin (pt) dp. (28)

It can be shown that |k,| < B(1 +pH,ja)’e "1, where B is a constant (Yue, 1995). As a
result, the semi-infinite integral with the depending parameters s and ¢ and the material
parameters (b, mu, nu;; j=1.2,...,n+1) in eqns (28) are uniformly and absolutely con-
vergent integrals. The total axial load P. and its associated moment M, in eqns (14) can be
evaluated by the following equations.

™1

¢(nydr =1, [I np(ryde = 1. (29)

VO v

It is noted that the systems of Fredholm integral equations of the second kind are standard
and regular integral equations which can be accurately evaluated (Atkinson, 1976).

6. SOLUTION OF THE ELASTIC FIELD

The solution of the elastic field (i.e., displacements u, the vertical stresses T. and the
plane strains I',) in the multilayered elastic solid induced by the eccentric indentation of
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the rigid circular plate can be explicitly expressed as follows using the set of solution
representations (4) and the solution of w(z) and Y.(z) in eqns (15).

—_pn |
w00 = | gk dir e [ W(OK, (5. 0 dr
2rap, 1 |, 2a Jo

To(s.0.0) = —° U POK.(s. L ) di+ ~— nl,(e)J
7 a’ 0

0

Y(OK..(5.{,0) dr}

. rl 1
Cs.0.0 = r U HOK,(s.L. 0 dr+ 2 11,(0) J w(t)Km(s,:.r)dz} (30)
0 0

Tap, 2a

where 0 < (. s < ¢, 0 < 6 < 2n. The kernel matrix functions are given in the following.

| — K (D5. 1)) (—K.(p¥,:. D} icos 0 0
K,.= 0 . K. :( 0 L ILy=} 0 sind 0
\ Kl,((D;,;.O) / 4 K( (pl{";;.O) ! 4 0 0 COSO,/)
| K(pDy3.2) — K. (p®,;,0) | | K{(p¥15.0)—K(p¥5.2)
Kp::( 0 > K:\ - _K\'(pLPIRaO)"K\(p“PL‘*z))
{ _KL»(Pq)lsqz)—K((Pq)m«o)/) 2K (p¥is. 1) !
[ K(@3,0)-K,(®),,2) | [ K (p®,,.3) 3K, (p®,;5.1) |
Km‘ = 7K.\'((DI3*0)_K\((DITH2) )s Kp»\ = K\(p®13-3)+K\"(p(D13~ 1) . (31)
! 2K (Ds:, 1) / =K (p®5.3) = K (p®,;, 1}/

The functions K(®, m) and K (@, m) (im = 0.1.2. 3) ineqns (31) are defined by the following
semi-infinite integrals.

K (@, m) = J D(p{)J.(ps) cos (pr)dp
1]

x

K(D.m) = { O(p),(ps)sin (pt) dp. (32)

0

In particular, at the surface of the multilayered elastic solid ({ = 0), the solution can
be further simplified as follows using eqns (16) to isolate the singular terms in the solution
expression (30).

21,)P

u,(5.0.0) = e a
1

U (DK, (5. ’)d'+ij WK, (s, l)drcos@}

uy(5.60,0) = _“I)P [7 J YN K, (s. r)d751n9:|

4nay, 2a

1—

d=v)f [X+chosaJ 0<s<
4u,a

u.(5,0,0) =
(T—=v)P. d!
d)(t)K,,o(s r)dz+ Y(DK, (s.1)dtcosB |, 1 <s< o

’nula 0
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—P. d
0..(5.0,0) = — | G (s)+ - G-(s)cos
2na- a

7,-(5.0.0) =0

0,-(5.0.0) =0

(1=2v))P. [ [ d !
£ (5.0.0) = ——— POK (s, 0)di+ - | (0K, (s 1) decost
87'[0'/1[ Jo «d |y

— 2[Gl (s)+ ng (s)cos H}}

(I1-=2vpP.|d [ .
eals.0.0) = —————— | = | Y()K,4(s.1)dssing
8ma- 2a |,
(1=2vpyP.{ ! d [!
en(5.0.0) = ———— (DK, (5. )de+ — | (DK, (s, t)decost |. (33)
8mau, Jo 2a [,
The kernel functions X,,, and K, (m = 0.1.2.3.4) are given in the following.
. 1
Kols.t)y = e +K,(k:.0)
Vs =r
i
Kul (S~ f) = T 3 +K;\(k39 1)
.\‘\/ A

Kooty = —Fuos. ) — K.(k,.0)

2
K, (s.1) = 2F(s.1)— %Fl (s.0)0+K (k,.0)—K,(k,.2)

5
K,(s, 1) = “;Fl(ss’)_K\(kho)vK\(kl»z)

5
K,(s, 1) = %F;(s,t)+K‘ (pk.,2)— K, (pk,,0)

42
K, (s.0) = s‘|:VF1(S- 1 —Fa(s, 1)J+K\([)k1-3)_3]<x(pkl* 1)

2
K,-(s.1) = — \ Fi(s.0)— K (pk,.2)— K (pk,.0)

412
K:(s.0) = — ; LF, (s. ) —F,(s. I):|—K\(pk,.3)—3K\.(pk,, 1)

4(2
K, (s.t) = s‘[s‘ Fi(s. 1) —F5 (s, z):|+K\(pk1. N+ K.(pk,. 1) 34)

where k; 1s given by eqn (20} and &, =[2/(2v,— 1)]®;(p. 2)}|._o— . It also can be shown
that |k,| < C(1+pH,ja)’e **"_ where C is constant. As a result, the semi-infinite integral
with the depending parameters s and ¢ and the material parameters (b, mu, nu;; j=1,
2., n+1) in eqns (34) are uniformly and absolutely convergent integrals.

The functions F, (s, 1} (n7 = 1,2,3). G,(s) and G-(s) in eqns (34) are expressed exactly
as follows.
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*“_)_J _(M>;"; 0<s<l
G.(s) = \/l—sl L dry e \/t:~sj . (35)
L0, l<s<a

The two functions G,(s) and G,(s) govern the singularity of the contact stress and the
strains at the surface ({ = 0). Furthermore, solution of the plane stresses T, = [g,,, 7,4, Goal”
and the vertical strains I'. = [¢,., &, 6..]7 can be easily and uniquely calculated by using the
solution of T_ and I', and the constitutive relation (1).

7. ASYMPTOTIC STRESS FIELD NEAR THE PLATE EDGE

It is well known that the stress field in an elastic solid induced by the indentation of a
rigid plate is singular at the edge of the rigid plate. In the ensuing, analytical results are
given to illustrate the asymptotic behaviour of the elastic stress field near the edge of the
rigid circular plate in the multilayered elastic solids. A local plane polar coordinate system
(R, ) was selected and its origin is exactly at a point (s = 1,{ = 0,8 = 0°) along the circular
edge of the rigid plate. The relationships between the global cylindrical coordinates (r, z) and
the local plane polar coordinates are defined as s = r/a = | + Rsin3 and { = z/a = Rcos §,
where R > 0and —90° < 3 < 90°. One can show that if R = 0 and R < 4,/a, the following
closed-form asymptotic results are valid for the multilayered elastic solids indented eccen-
trically by a rigid circular plate.

] N
—P. d R ~
T.(5.0.0) = — | ¢(1)+ — Y(DIL(6) 0 |—=+0/R)
2ra” | a |
S+ S, Y
] S, =5,
. —P. d ~
1,600 = | 6+ S un, @ ( 0 | = +0/B
maL Y 2\'|S1 N
d H(1—=2v)S, —S. ) )
[,(.0.0)=— [¢(1)+ -~ !//(I)Ha(e)jl( 0 ) —=+0(/R) (36)
and’p, a o, JR
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Fig. 2. Variations of the coefficient functions S,, S., S; and S, vs the local tangential coordinate 3.

where

S, =1 1—sind

!
2

I - Frar—
S, = ;(cos 3 —sin23)/1 +sin I

S: = Hcos $+sin29),/1 —sin . 37)

T4

Figure 2a illustrates the variations of S|, S, and S, vs the local tangential coordinate 3. The
following observations can be made from eqns (36) and (37).

1. The stresses g,,, Ggg. 6., and ¢,. have the singularity of R ~''? at the edge of the rigid
plate while ., 6, and &g have no singularity. At the surface { = 0, ¢,. is zero.

2. The variations of the coefficients of the stress singularity vs the local coordinate $
are exactly the same for both the axisymmetric indentation and the central rotation
of the rigid plate.

3. The effect of layering material non-homogeneity on the singular stress field near the
edge of a rigid circular plate is governed by ¢(1) and (1) for the axisymmetric
indentation and central rotation of the rigid plate, respectively.

4. The vanations of the coefficients of the stress singularity vs the local coordinate 9
are independent of the material properties of the multilayered elastic solids. The
variation of the coefficient of the strain singularity (limRﬁO\/R &,) vs the local
coordinate $ is dependent on the Poisson’s ratio v, of the first layer.

Referring to Sih (1991). a strain energy density factor § is introduced to further
illustrate the effect of layering material non-homogeneity on the singular stress field at the
edge of the rigid plate. The strain energy density factor S is defined as follows in the local
plane polar coordinates.

. aR| L R s s s
S= };H;l) 471’ O':,—{—O'&;*FU;: - T_‘;_: (0',,“‘0'(4(-)—'—0'_—:)- +2(6;H+a;:+6(;2) . (38)

Using eqns (36)—(38), one can express the strain energy density factors S. and S,, respec-
tively, due to the axisymmetric indentation and central rotation modes, as follows.

P11 P2y
s.= W g g 2PV D g (39)
1287°a* u ’ 1287°%a’ u
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where

S, =5—8v, —4(1 —2v,)sin$+cos23. (40)

Figure 2b illustrates the variation of the function S, vs 3 (—90" < 3 < 907) for different
values of the Poisson’s ratio v,.

During the eccentric indentation of a rigid plate, a multilayered elastic solid may start
cracking due to the stress concentration at the edge of the rigid plate. According to Sih
(1991), crack initiation will start in a radial direction along which the strain energy density
factor S is a maximum. Consequently, the results presented in eqns (39) and (40) indicate
that cracks may initiate in the multilayered elastic solid at the edge of the rigid plate along
the local radial direction of either 3 = —sin '(1 =2v)) for 0 < v, < 1/2 or 3 = —90° for
—1 < v, £0. This initiation direction is because (1) for 0 € v; < 0.5 and 9 = —sin™'
(1—2v)), then dS,/d% =0 and d-S,/d% = —16v,(1—v)) <0 and (2) for —1 <v, <0
and 9 = —n/2, then dS,/d3 =0 and d°S,/d% = 8y, < 0. These results indicate that the
direction of a crack initiation at the rigid plate edge is governed only by the Poisson’s
ratio v,. The layering material non-homogeneity and the loading modes (P., M,) only have
the influences on the magnitude of the strain energy density factor.

8. CLOSED-FORM SOLUTION FOR AN ELASTIC HALFSPACE

It 1s instructive to examine the solution for a homogeneous elastic halfspace eccen-
trically indented by a rigid circular plate. It can be shown that the systems of Fredholm
integral equations of the second kind (27) have the closed-form solutions for a homogeneous
elastic halfspace. i.e.. ¢(s) = 1 and ¥(s) = 3s. As a result, the elastic field in eqns (30) can
be reduced to the following in the forms of elementary functions.

PR - P: . 3d .
u(S’ 0- 5) =TT [Hu:(s- ‘:) + =5 H(J(H)Hu\'(s‘ 5)}
drau, 2a
—P. 3d
Tﬂﬂ0=fptm9+;ﬂwmAﬁJ
2na- =d
o - P: " 3d .
rp(S~ H S) = [le:(s~ S) + - na(B)Hp)'(Sﬂ 5):\ (41)
dra 2u

where 0 < {, s < . 0 < 6 < 2xn. The kernel matrix functions H,.. H,., H_.. H_.. H_, and

H, are given by

/(l —2v) 2y =<2 [(2v) =D (Yoo — Ya0) (Yo — Yay)

Hm=( 0 .Hmzbvbnww+nm{um+nu
20v = N2y =200 ' 4(vi =1 Y, —2(Y1, /
VAR i 1/(2\‘,—l)(Z:,—Z(,1)+C(2334202)\

H.= ( 0 . H,_= 5 0
AT VA =2\ W20+ Z0 ) —UZas+ Zy2) ]
P =Yy = Yaa) | P2y = 1)(Y5, =3Y, )+ —3Y )0

H.—,\ =| {Y4p:+7Y) | H,u :7( vy =Yy + Y ) +(Y+ Y1) (42)

V2(Y, + Y0 =2y WY+ Y ) =Y+ Y) /

where Z,,, and Y, (m =0,1.2,3;k =0.1.2) are non-dimensionally elementary functions
of s and { and are given in the Appendix A. It can be shown that these results in equations
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(42) and (43) are identical to those obtained from classical elastostatics (see, e.g., Bous-
sinesq, 1885 ; Sneddon and Harding, 1945: Sneddon, 1946 ; Gladwell. 1980).

9. NUMERICAL EVALUATION

Considering the structure of the kernel functions (28), it is unlikely that the systems of
Fredholm integral equations of the second kind (27) will have exact solutions. In this paper,
the following numerical scheme was adopted for the evaluation of the solutions of the
Fredholm integral equations of the second kind (Yue, 1992; Yue and Selvadurai, 1994).
The interval [0, 1] is divided into N segments with ends defined by 5, =(k—-1)/N.: k=1, 2,
3. ..., (N+1), and the collocation points are x, =(s,+s5.,.,)/2, k =1,2,3,.... N. Conse-
quently we can convert the integral equations into two systems of linear algebraic equations.
These linear algebraic equations can be written in the following generalized matrix form.

N1
Z [Axl[Xi] = (B/] (43)

k=1
where /=1, 2. 3. .... N, N+ 1. The eqns (44) are solved numerically to generate the
unknown variables ¢(x,) (k=1,2,3,...,N) and X. for the axial translation and ¥(x,)

(k=1,2,3,....N) and X, for the central rotation of the rigid plate. The solution of the
elastic field induced by the eccentric indentation of the rigid plate can be further evaluated
using eqns (30)—(36) and the numerical results of eqns (44).

The numerical techniques adopted here involve three computational steps. The first
step is the evaluation of the solution in the transform domain (15)-(18). It is noted that
®(p. o) and W(p.z) in eqns (15) have no functions of exponential growth. This property
ensures that the calculation of the kernel functions is stable and can be very accurate for
any arbitrary combination of dissimilar elastic layers in the multilayered solid (Yue, 1995).

The second step involves the numerical integration of the semi-infinite integrals in eqns
(28) and (32). The semi-infinite limit of the integrals was handled using a proceeding limit
technique. Furthermore, as the evaluation depth becomes near the surface ({ is small), the
integrands in eqns (32) will very slowly converge to zero as p becomes large. This property
of the integrands will slow the convergence of the numerical integration and render the
numerical integration procedure unstable. This numerical problem is overcome by using
an asymptotic technique which separates the integrands into two parts. The first part relates
to the asymptotic functions as p is very large. The second relates to the difference between
the integrands and their asymptotic functions. Closed-form results can be obtained for the
infinite integrals associated with asymptotic functions. The proceeding limit technique,
which is based on an adaptively iterative Simpson’s quadrature, was used for the evaluation
of the infinite integrals associated with the remaining terms. The details of these two
techniques are documented in the Appendix B.

The third numerical step involves the systems of Fredholm integral equations of the
second kind (27) and the solution of the elastic field (30) and (33). The numerical solutions
of the integral eqns (44) have been well investigated by many researchers (see, for examples,
Baker, 1977 : Delves and Mohamed, 1985). These studies show that with the increase in the
segment number N it is possible to obtain more accurate and readily convergent solutions
for the integral equations.

Based on the above discussions, the following equations were applied to numerical
evaluation of the elastic field. (i) For { > H, aand s > 0. the following numerical integration
was used.

1 \
[ ONK, (5.l ndr = Z P IK (5. L )N
0

k=1

1 \
Y(OK, (.o dr = Y K, (5.0 6)/N (44)

0 k=1



4034 Z.Q. Yue

where K,. = K,.. K.., K,.; and K,, =k,. K., K,,. (ii) For 0 <{ < H,/a and s > 0, the
following equations were used to more accurately calculate the results.

1 N 1
J\ ¢(1)Kh:(55 C* [) dt X Z (b(ll\)K;{:(sa Cs rk)//i)v+J\ ¢(I)Ku:(s~ g? t) dt
0 k=1 0

1 N !
J VOK, (s, {0 dex 3 )KL lk)/’N+J Y (DKG, (s, ¢, 1) dr (45)
0 k=1

0

where Ki. and Kj, are the closed-form results associated with asymptotic functions; and
Ki. and K{, are the kernel functions associated with the remaining terms (see Appendices
A and B). The integrals in eqns (46) associated with the asymptotic functions can be
accurately calculated using the Simpson’s quadrature based adaptively iterative integration.
(11i1) For { = 0. the eqns (46) were used again. However, special treatment was given to the
weak singularity of the integrands associated with the functions Fs(s, r) and Fy(s, 1) in eqns
(35). In particular, the following equations were used for the evaluation of the singular
functions G,(s) and G,(s) (0 < s < 1).

1y rird 41 d
o de_)s: | [‘(ﬁ(rl)‘ (gf)lf/;l_sz
_%}[ (14 1—5) —In(s)]
e 2[00 2]
—55 (V( )>[] 1+ T=s)=In(s)]. (46)

The definite integrals in the above equations are proper and can be easily calculated.

In the above evaluation, the functions ¢(s) and (s) and their derivatives d¢(s)/ds and
d/ds(y(s)/s) were calculated from their values at the collocation points x; (k = 1,2,3,...,N)
using the three points Lagrange’s interpolation.

10. VERIFICATION OF NUMERICAL SOLUTIONS

Due to the accumulations of the errors in each repeated numerical integration, numeri-
cal results are presented in the ensuing to verify the techniques adopted in this study. It is
noted that the contact problem of the eccentrically loaded rigid plate on a multilayered
elastic solid decouples into two symmetrical problems of an axisymmetric indentation mode
P and a central rotation mode M,. As a result, the numerical results can be more clearly
presented in terms of the two deformation modes of axisymmetric indentation and central
rotation of the rigid plate. Furthermore, the tangential variation of the elastic field associ-
ated with the central rotation mode is governed by the matrix IT,(#) in eqns (31). Because
the elements of I1,(9) are the elementary functions of sine and cosine, the presentation of
the numerical results will focus on the variation of the solution with the radial and vertical
coordinates s( = r/q) and J( = z/a).

10.1. Convergence of the numerical solutions
A model of a six-layered elastic pavement was employed as an example. Referring to
Bush and Baladi (1989), the properties of the six elastic pavement layers were selected as
follows {hja} = {03,0.7,1.0,1.0,1.3,c}; {u/u} = {1,0.5,0.2,0.09,0.05,0.01}; and
v} ={0.35.0.3,0. 25 0.4.0.45,0.5}, where j = 1-6. The convergence of the numerical solu-
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Table 1. Effect of N on the convergence of the numerical solution of ¢(s) and

¥(s)

N=35 N=15 N =130 N=150 N =100
s @) o(s) P(s) P(s) $(s)

0.0 0.76728 0.75924 0.75890 0.75883 0.75881
0.1 0.76709 0.76370 0.76340 0.76333 0.76330
0.2 0.77960 0.77744 0.77716 0.77710 0.77707
0.3 0.80482 0.80144 0.80113 0.80107 0.80105
0.4 0.83686 0.83760 0.83741 0.83736 0.83734
0.5 0.89339 0.89037 0.89008 0.89004 0.89002
0.6 0.96313 0.96636 0.96639 0.99632 0.96629

0.7 1.07994 1.07724 1.07702 1.07693 1.07692
0.8 1.24382 1.23480 1.23438 1.23429 1.23426
09 1.45477 1.44650 1.44573 1.44559 1.44553
1.0 1.71280 1.70737 1.70447 1.70396 1.70379
s Yis) yis) Wis) vis) Pis)
0.0 0.01836 0.00040 0.00005 0.00001 0.00000
0.1 0.21917 0.21531 0.21495 0.21488 0.21485
0.2 0.43817 0.43470 0.43411 0.43398 0.43392

0.3 0.67533 0.66375 0.66268 0.66248 0.66239
0.4 0.91384 0.90938 0.90826 0.09800 0.90788

0.5 1.20418 1.18486 1.18306 1.18273 1.18259
0.6 1.51583 1.50819 1.50675 1.50623 1.50602
0.7 1.94034 1.91013 1.90746 1.90678 1.90655
0.8 247771 2.42203 2.41832 2.41748 241714

0.9 3.12795 3.06722 3.06168 3.06056 3.06008
1.0 3.89105 3.83949 3.82855 3.82642 3.82560

Table 2. Effect of N on the convergence of the derivatives of ¢(s) and ¢ (s)

N=35 N=15 N=130 N=150 N =100
8 de(s):ds dep(s)/ds dep(s)/ds d¢(s)/ds do(s)/ds

0.0 —0.06554 —0.00156 —0.00019 —0.00004 —0.00001
0.1 0.06156 0.09081 0.09042 0.09041 0.09040
0.2 0.18866 0.18665 0.18647 0.18643 0.18641

0.3 0.31576 0.29857 0.29666 ).29658 0.29655
0.4 0.44286 0.43662 0.43605 0.43593 0.43588
0.5 0.68781 0.63604 0.63005 0.62984 0.62976
0.6 0.93275 0.91587 0.91433 0.91400 0.91387
0.7 1.40346 1.33007 1.32117 1.32070 1.32050
0.8 1.87417 1.84374 1.84103 1.84045 1.84021
0.9 2.34487 2.36839 2.37491 2.37437 2.37415

1.0 2.81558 2.84890 2.78017 2.76157 275315

Ay (s) ] d[y(s) s] d[¥(s).s] ay(s):s] dy(s)s]

s

ds ds ds ds ds
0.0 -—0.19272 —0.00524 —0.00063 —0.00014 —0.00002
0.1 0.05204 0.13708 0.13582 0.13577 0.13575

0.2 0.29680 0.29070 0.29014 0.29002 0.28997
0.3 0.54156 0.49311 0.48769 0.48748 0.48739
04 0.78631 0.76682 0.76503 0.76466 0.76450

0.5 1.30205 1.18541 1.17217 1.17154 1.17127
0.6 1.81778 1.76566 1.76095 1.75995 1.75923
0.7 2.66785 2.55565 2.54318 2.54173 2.54112
0.8 3.51792 3.42262 3.41413 3.41233 3.41157
0.9 4.36799 4.08638 4.10608 4.10424 4.10347
1.0 5.21806 4.56970 4.37676 433185 431273

tion was verified by considering the influence of the segment number N in eqns (44) and
the relative/or absolute error ¢, (eqn (B2)) of the numerical integration. Some of the results
are presented in Tables 1-4, where N was 5, 15, 30, 50, or 100 and ¢, was 10~ * in the cal-
culation. Furthermore, the patterns of the above numerical results are illustrated in Fig. 3,
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Table 3. Effect of NV on the convergence of the vertical surface deflection

N=35 N=15 N=30 N =30 N =100
ap_(s) apu.(s) apu () apu_s) apu.(s)

¥ P. P. P. P. P.
0.0 2.24438 2.24206 2.24184 2.24180 2.24178
1.0 2.24438 2.24206 2.24184 2.24180 2.24178
1.01 2.21896 2.21695 2.21674 221670 2.21669
1.05 2.18616 2.18441 2.18424 2.18420 2.18419
1.1 2.15939 2.15791 2.15777 2.15774 215773
1.15 2.13715 2.13589 2.13577 2.13574 2.13573
1.2 211713 2.11606 2.11596 211593 211592
1.25 2.09856 2.09763 2.09754 2.09752 2.09752
1.3 2.08107 2.08025 2.08017 2.08016 2.08015
1.4 2.04861 2.04794 2.04788 2.04786 2.04786
1.5 2.01883 2.01823 2.01818 2.01817 2.01816
2.0 1.89427 1.89385 1.89381 1.89380 1.89380
2.3 1.79167 1.79134 1.79131 1.79131 1.79130
3.0 1.70121 1.70096 1.70094 1.70093 1.70093
4.0 1.54342 1.54325 1.54323 1.54323 1.54323
5.0 1.40651 1.40637 1.40636 1.40636 1.40636
_ a” () a’ e (s) @ pu-(s) a () @ p-(s)

: M M, M M, M,
0.0 0.00000 0.00000 0.00000 0.00000 0.00000
1.0 0.53825 0.53048 0.52977 0.52962 0.52956
1.01 0.48544 0.47931 0.47869 0.47856 0.47851
1.05 0.43221 0.42726 0.42677 0.42667 (.42663
1.1 0.39787 0.39389 0.39350 0.39342 0.39338
1.15 0.37357 0.37033 0.37002 0.36995 0.36993
1.2 0.35407 0.35142 0.35117 0.35111 0.35109
1.25 0.33756 0.33537 0.33513 0.33511 0.33509
1.3 0.32320 0.32136 0.32118 0.32114 0.32113
1.4 0.29930 0.29791 0.29778 0.29775 0.29774
1.5 0.28019 0.27907 0.27896 0.27894 0.27893
2.0 0.22300 0.22240 0.22234 0.22233 (.22232
2.5 0.19274 0.19236 0.19233 0.19232 0.19232
3.0 0.17276 0.17250 0.17248 0.17248 0.17247
4.0 0.14675 0.14661 0.14659 0.14659 0.14659
5.0 0.12920 0.12911 0.12908 0.12908 0.12908

where N used was 100. In Table 3 and Fig. 3(b). apuu.(s)/P. and a pu(s)/ M, indicate the
non-dimensional vertical surface deflections associated with the axisymmetric indentation
mode and the central rotation mode. respectively. Similarly, in Table 4 and Fig. 3(c),
a'o..(s)/P. and a’e_(s)/M, indicate the non-dimensional contact normal stress associated
with the axisymmetric indentation mode and the central rotation mode, respectively.

The results listed in these tables indicate that the numerical solutions of ¢(s) and y(s),
the derivatives dé(s)/ds and dfy(s);s]/ds. the vertical surface deflection and the contact
normal stress converge quickly and stably as the increase of the segment number N. In
particular, Fig. 3b and Fig. 3c also illustrate the vertical surface deflections and the normal
contact stresses associated with a six-layered elastic pavement model where the sixth elastic
layer is not of semi-infinite extent, but. has a limit thickness of A, a = 20.0. and either
smoothly or roughly rests on a rigid base. The results indicate that the base condition has
an effect on the vertical surface deflection associated with the axisymmetric indentation
mode. but a very limited effect on the surface deflection associated with the central rotation
mode and on the contact normal stress associated with the both basic modes.

10.2. Accuracy of the numerical solutions
The results given by Gao er al. (1992) for the contact compliance of a one or two
layered elastic halfspace were used as the first example for the verification of the accuracy
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Table 4. Effect of N on the convergence of the normal contact stress

N=35 N=15 N =30 N =50 N =100

. —aa.(s) —ara..(s) —ae_(s) -G _{s) — @ o..(5)
10 P, 10 2P, 10-2P. 10 2P 10 P

0.0 —0.70971 2.52499 2.66226 2.68281 2.68958
0.01 4.82055 2.65548 2.67687 2.68518 2.68898
0.1 2.58602 2.70414 2.76299 2.77370 2.77780
0.2 237146 2.97328 3.03295 3.04397 3.04835
0.3 2.79434 3.44316 3.50840 3.52000 3.52448
0.4 3.56872 4.19759 4.26157 4.27354 427818
0.5 4.74367 5.42035 5.49051 5.50198 5.50642
0.6 7.21502 7.64044 7.69163 7.70075 7.70417
0.7 11.63178 11.98220 12.02165 12.02555 12.02669
0.8 21.35027 21.17469 21.17261 21.16918 21.16702
0.85 29.91503 29.55578 29.54635 29.53924 29.53530
0.9 43.94660 43.5496% 43.52943 43.52072 43.51577
0.95 73.63420 73.20316 73.23769 73.22789 73.22137
0.97 101.38839 100.90923 100.91208 100.91202 100.90536
0.99 186.94853 186.26203 186.07339 186.05256 186.04552

—a' e (%) —a'e.(y) —a'o.(s) —a'o..(5) —d'e..(s)

&y S — T .
10 °M, 10 ° M, 10 "M, 10 “M, 10 °M,

0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.01 0.24178 0.18054 0.18013 0.18013 0.18015
0.1 1.74804 1.80353 1.81176 1.81265 1.81289
0.2 3.29105 3.68013 3.69620 3.69800 3.69853
0.3 5.11401 5.73144 5.75829 5.76099 5.76173
0.4 7.39879 8.17614 8.20663 §.20977 8.21055
0.5 10.46147 11.48545 11.52434 11.52634 11.52647
0.6 15.94308 16.83680 16.85118 16.84851 16.84647
0.7 2582125 26.81193 26.79694 26.78399 26.77725
0.8 46.60055 47.50156 47.42262 47.39399 47.37996
0.85 65.35445 66.32565 66.22702 66.18702 66.16763
0.9 96.75497 97 75708 97.61536 97.56857 97.54530
0.95 164.31193 164.38384 164.34465 164.28052 164.24707
0.97 227.76338 226.69090 226.52268 226.46636 226.42594
0.99 423.05637 418.69337 417.86184 417.70668 417.64428

of the numerical solutions obtained in this study. Tables 5 and 6 illustrate the comparison
of results for the contact compliance 4ap-D./(I —v,) P.. The digital results of Gao ez al.
(1992) in Tables 5 and 6 were estimated from Fig. 2 in the paper of Gao er al. (1992). As
is evident, the results of the current study are well consistent with the results obtained by
Gao er al. (1992) from a finite element analysis. Figure 4 also illustrates the contact
compliance of a one or two layered clastic halfspace for a wide range of the shear modulus
ratio u,/u, of a one-layered elastic halfspace or the shear modulus ratio u,/u; of a two-
layered elastic halfspace.

The second example is to verify the contact normal stress beneath a rigid plate, where
the results given by Chen and Engel (1972) are used for comparison. Figure 5a illustrates
the non-dimensional pressure distribution under a rigid circular plate for the axisymmetrical
indentation of the rigid plate at the surface of a one-layered elastic halfspace. In Fig. 5(a).
the ratio of /1,/ais 0.2, 0.3.0.4.0.5. 1. 1.5. 2. or . It is evident that the results in Fig. 5(a).
for the cases of i1/« = 0.3, 0.5, 1, 2, or x. are exactly the same as those in Fig. 6 of Chen
and Engel (1972) using a least-squares approach. As observed by Chen and Engel (1972),
when the first layer becomes thinner, i.e.. #,/a = 1. 0.5, there is a central region where the
normal stress between the layer and the plate is tensile. When the layer is still thinner, i.e.,
hja =0.4,0.3, 0.2. this region of tensile contact stress becomes an annular strip. Figure
5(b) illustrates the non-dimensional pressure distribution under a rigid circular plate for
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Fig. 3. Solution of the integral equation, surface deflection and normal contact stress for a five-
layered elastic halfspace.

the central rotation of the rigid plate at the surface of a one-layered elastic halfspace, where
8 =0.

In the calculation of the above two examples, the segment number N was 100 and the
error of numerical integration ¢, was 107°. From the results presented above, it can be
concluded that the numerical scheme and techniques adopted in this study provide highly
stable and accurate solutions for the mix boundary value problem of classical elasticity in
multilayered solids.
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Table 5. A comparison between the results of axial indentation 4au,D./(1—v,)/P. given by {1) the current study
and (2) Gao et al. (1992) for onc-layered halfspace

hy‘a 0.5 0.5 1.0 1.0 3.0 3.0 7.0 7.0
i (M e ey (2) n 2 (H 2
0.5 1.27469 1.272 1.44753 1.440 1.75298 1.784 1.88924 1.876
0.6 1.18632 1.180 1.30136 1.256 1.50381 1.448 1.59369 1.580
0.7 1.12168 1.112 1.19553 1.180 1.32497 1.312 1.38218 1.372
0.8 1.07202 1.060 1.11505 1.104 1.19016 1.180 1.22322 1.212
1.0 1.00000 1.000 1.00000 1.000 1.00000 1.000 1.00000 1.000

1.7 0.86947 0.860 0.79899 0.792 0.67983 0.672 0.62905 0.620
1.8 0.85797 0.848 0.78191 0.772 0.65375 0.648 0.59929 0.592
1.9 0.84745 0.836 0.76640 0.760 0.63028 0.624 0.57260 0.568
2.0 0.83777 0.828 0.75223 0.744 0.60902 0.612 0.54853 0.548

Table 6. A comparison between the results of axial indentation 4ay;D.; (1 —v,): P. given by (1) the current study
and (2) Gao er al. (1992) for two-layered halfspace

hy'a 0.5 0.5 1.0 1.0 3.0 3.0 7.0 7.0
e h (3] )] (2) (h @ )] 2
0.5 1.33414 1.330 1.51823 1.52 1.79445 1.762 1.90853 1.897
0.6 1.23047 1.223 1.35361 1.358 1.53418 1.509 1.60780 1.600
0.7 1.15259 1.142 1.23194 1.231 1.34596 1.325 1.39191 1.382
0.8 1.09134 1.081 1.13771 1.138 1.20313 1.186 1.22923 1.215
1.0 1.00000 1.000 1.00000 1.000 1.00000 1.000 1.00000 1.000
1.7 0.82617 0.823 0.74979 0.754 0.65304 0.649 0.61676 0.615
1.8 0.81038 0.800 0.72800 0.730 0.62451 0.621 0.58590 0.578
1.9 0.79590 0.790 0.70817 0.709 0.59882 0.594 0.55820 0.554
2.0 0.78254 0.778 0.69003 0.689 0.57555 0.586 0.53321 0.530

4842Dz/(1-1,)/P, 4ausDz/(1-v,) /Py
10 — 10

v =up=0.25

(b) pe=ltinl(2

10

1
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0.1 =

| E ek he/a=7.0
Lol ol v oeegnel g1 |
0.0 | sl prenmd coond Cevan
d.01 0.1 1 10 100 0.04 61 0.1 1 10 100
g/ e /s

Fig. 4. Variations of a rigid plate loading compliance vs shear modulus ratio for a one-layered
elastic halfspace (a) or a two-layered elastic halfspace (b).

I1. FURTHER NUMERICAL RESULTS

In the ensuing further numerical results are presented to illustrate the influence of
layering material inhomogeneity on the elastic field induced by the eccentric loading of a
rigid plate. The pavement model of a five-layered elastic halfspace 1s employed again as an
example (see Section 10.1). The elastic field in the five-layered elastic halfspace due to
axisymmetric indentation of the rigid plate is presented in Figs 6, 8, 10, 12 and 14 while the
elastic field due to the central rotation mode is presented in Figs 7, 9, 11, 13 and 15. In the
calculation of the numerical results, the segment number N was 100 and the error of
numerical integration ¢, was 10~°. For comparison purpose, the corresponding elastic field
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Fig. 9. Displacements vs radial distance for either a five-layered halfspace (solid line. 4 = B = 100}
or a homogeneous halfspace (dashed line. 4 = 500. B = 200) rotationally indented by a rigid plate.

is also presented in these figures for a homogeneous elastic halfspace (y, = g, v, = 0.35)
induced by the axisymmetric and rotational indentation of the rigid plate.

Figures 6 and 7 illustrate respectively the variations of the non-dimensional dis-
placements (anuu,/P.. anpu./P.) and (@ rnuu,/ M. a’muufM,) vs the depth z/a in both the
five-layered and the homogeneous elastic halfspaces. The displacements in the homogeneous
elastic halfspace are decaying much faster with the depth and have much smaller values
than those in the five-layered elastic halfspace. The displacements due to the central rotation
M are decaying much faster with the depth than those due to the axisymmetric indentation
P_. At the interfaces ;¢ = 0.3, 1.0, 2.0, 3.0, and 4.3, the gradients of the displacements are
not continuous for those in the five-layered elastic halfspace and are continuous for those
in the homogeneous elastic halfspace.

Figures & and 9 illustrate respectively the variations of the non-dimensional dis-
placements (anpu,: P anpu./ P.) and (@*muu,; M, a’muu-i M ) vs the radial distance r/a at the
interface depths in the elastic halfspaces. The displacements in the homogeneous elastic
halfspace are decaying much faster with the radial distance than those in the five-layered
elastic halfspace. The displacements due to the central rotation M, are decaying much faster
with the radial distance than those due to the axisymmetric indentation P..

Figures 10 and 11 illustrate the variations of the non-dimensional stresses vs the depth
z;a in the two elastic halfspaces induced by P. and M. respectively. The vertical stresses
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Fig. 10. Stresses vs depth for either a five-layered halfspace (solid line) or a homogeneous halfspace
(dashed line) axisymmetrically indented by a rigid piate.

(0,- and ¢..) in the homogeneous elastic halfspace are decaying slower with the depth than
those in the five-layered elastic halfspace and have more or less the same values of the
latter. At the interfaces z/a = 0.3, 1.0, 2.0. 3.0, and 4.3, the gradients of the vertical stresses
are not continuous for those in the five-layered elastic halfspace and are continuous for
those in the homogencous elastic halfspace. The horizontal normal stresses (o, and o) in
the two solids have quite different patterns of the variations with the depth. The normal
horizontal stresses in the five-layered elastic halfspace have the discontinuity of the first
kind across the interfaces. Very high tensile stresses are generated for the horizontal normal
stresses at the bottom of each layer in the five-layered elastic halfspace.

Figures 12 and 13 illustrate the variations of the non-dimensional vertical stresses (o,
and o_) vs the radial distance r/a at the first three interfaces (z/a = 0.3, 1.0 and 2.0) in the
two elastic halfspaces induced by P. and M., respectively. The vertical stresses in the
homogeneous elastic halfspace are decaying slower with the radial distance than those in
the five-layered elastic halfspace and have more or less the same values of the latter.

Figures 14 and 15 present a detailed illustration of the discontinuity of the horizontal
normal stresses (o, and g,,) at the interfaces z/a = 0.3, 1.0, 2.0, 3.0, and 4.3 in both the
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halfspaces. The tensile normal stresses at the bottom of an elastic layer (i.e.. z/a =037,
1.07.2.07, 3.0 or 4.37) are much higher than those at the top of an elastic layer (i.e..
za=03",1.0%. 207, 3.07 or 4.37) and those at the same depth in the homogeneous
elastic halfspace.

12. CONCLUSIONS AND RECOMMENDATIONS

According to the results presented above. one can summarize the conclusions and
recommendations as follows.

1.

Using classical theory of Fourier integral transforms and the transfer matrix tech-
nique, the paper has presented an analytical solution. in the framework of classical
elasticity. for the elastic field in a multilayered elastic solid whose surface is subjected
to the eccentric indentation of a rigid circular plate.

The stress singularity at the edge of the rigid plate in the multilayered elastic solids
has been given in exactly closed-form. The direction of crack initiation at the rigid
plate edge is affected only by the Poisson’s ratio of the top layer near the surface
according to a criterion based on the strain energy density factor.

The solution has been analytically reduced to the case of a homogeneous elastic
halfspace cccentrically indented by a rigid plate. The solution of this special case is
presented in the forms of elementary functions.

A computational program in FORTRAN has been developed to calculate the
displacements, stresses, and strains in the multilayered elastic system induced by
the rigid plate. The difficulty associated with the slow convergence of numerical
integration near or at the surface of the multilayered solid has been overcome by
using an asymptotic technique. In particular, the singularity of the solution at the
edge of the rigid plate has been isolated and can be examined analytically and
accurately.

. Numerical verification has been given on the techniques adopted in the paper. It

has been shown that the solution is amenable to numerical results with very high
efficiency and accuracy.

The presented numerical results illustrate that the layering material non-hom-
ogeneity has a significant influence on the elastic field induced by the eccentrically
loaded rigid plate.

Although the paper considers only the pertectly bonded interface condition between
any two connected elastic layers. the solution expressions can be directly applied to
other interface conditions such as smooth and frictional interface conditions. For
the other interface conditions. only the kernel functions (@, ®3;, ¥; and W13, (15))
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Fig. 14. Horizontal normal stresses vs radial distance for either a five-layered halfspace (solid line)
or a homogeneous halfspace (dashed line) axisymmetrically indented by a rigid plate.

need to be re-formulated algebraically using the governing eqns (8)~(11) in the
transform domain and the specifically imposed interface conditions.

8. Finally, itis recommended that the analytical solution can be applied to the improve-
ment of the current backcalculation methods associated with the FWD non-
destructive testing of highway and airport pavements.

Acknowledgemenis—The author thanks the referees for their constructive comments and suggestions which
enhanced the presentation of this paper.
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APPENDIX A

This appendix contains the closed-form results for the semi-infinite integral with depending parameters
defined by the following equations.

~y

Salt.s. S ky = | singpnd,(ps)e “ p*dp

it

C.(t.s. 0. k)= J cos (p1)J.{ps)e ™ p*dp (A1)
0

where { 2 0;for Sp, k= —1,0. 1.2, 3:for S|, k= —2. —1.0.1,2. 3 for So. k= -2, —1,0,1.2,3;for S3. k =
—1.0.1,2,3;for Copo k=0,1,2,3.for C,, k =0,1,2. 3, and for C,, k = 1, 2. 3. It can be shown that these semi-
infinite integral can be analytically integrated in the forms of elementary functions as follows.

. 2
Sotr.s, (. —1) = arcsm( — — - >
GEFY O+ =0T+ 8

{ N R A
Sisl, =2y = Tn ':1()1 — )" +4s” arctan (”)J

Ho— [ 5 4
Sutros =2 = T 3 - 3]
129752
S, (s s k—1)

St 5. (k) =

0
s
Su(15.0k) = 2 S s Lk = 1) = Sy(1.5. LK)
R

4
Sa(t,5, k) = B S-(tes. S k—1) =S\ (1.5, k)

(Sl 8.8 — 1
Colt.5.5.0) = L‘f%
;
cC s L k—1)

&

Colts.l k) =

bl
C.(ts.0 k) = f( (.l k=D —Colt.s. 0 k) (A2)

o

where m =0, 1:
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= 2 N S e N G B TE

for Sp. k2 0;for S k= —1:.for S), kz—~1:forSi.k 20:forC,(j=0,1,2),k > L.
In particular, the elementary functions in eqns (43) are given by the following equations.
Zpi = Spllis.k=1), k=0
Yoo =1—(So(Ls., =D —s8, (1, 5,8, — 1)
Yoo = So(Ls.l k=D —Co(lis.l k). k=1
Vig = sSo(l.s.c. =D —=CSi(Lose o = D=S1(ls.{, —2)
Yio=S(Ls..k—1—Co(l.s.( k), k=21

2
Yoo =88 (Ls, i =D+ ISptls i — 1) — ‘\_5-5](1.3'.;. —2)-25,(1,5¢,—2)

=~

2
=S L 5. L0 = IS (L s SO+ S (ls g — 1y — ;Sl(l.s,i. -2)

Voo = So(ls. S A=1-C /(s .0k k=2



Eccentrically loaded rigid plate elastic fields 4049

4. .
Yo = _Y:nf}ll
)
4
Yiy = '\ Yo=Yy, (A3)

where Z,, and Y, are defined by

(7 . sin
Zy =1 pedAps) sntp) dp
Jo P
Y, = ore ", (ps) w@ dp. (A4)
JO p’

APPENDIX B

[n general, the semi-infinite integrals in the kernel functions (28) and (32) can be evaluated by using the
following proceeding limit technique.

. A, £, A,
I Flp)dp = [ F(p)dp+' Flp)dp~---+ F(p)dp (Bl)
[y v il JAy v,
where 0 < 4, < A, -+ < 4,., is a sequence of numbers that approaches infinity and the integrand F(p) is given
in eqns (28). (31), {32). and (34).

Each finite integral on the right-hand side in equation (B1) is proper and can be calculated by using the
Simpson's quadrature based adaptively iterative integration. The evaluation of these proceeding finite integrals is
automatically terminated provided the following condition is satisfied.

[l N
where ¢, Is an assigned absolute or relative error.
If the evaluation depth is near the surface of the multilayered elastic solid, i.e.. 0 < { < H,/a. the functions
®,,, &;;, ¥,;, and ¥, have the asymptotic functions in the following as p is large.

rA

A

F(p)dp B Fip)dp

}S £, (B2)

:"41‘ &",

@ x 32 —1-pdle

Dy x 200 — Dy —plle

Y, x—pze ™

Wi x [l+pz]e ™. (B3)
The semi-infinite integrals in eqns (32) associated with the asymptotic functions (B3) can be integrated in exact-
closed form by using equations (A2). As a result, the semi-infinite integrals associated with the remaining term in

equations (B1) can be evaluated with high accuracy and efficiency. The above procedure can accommodate the
problems associated with the semi-infinite integrals with depending parameters.



